Ph.D. candidate in Biostatistics, Jin Jin, will present:
“Voxel-wise Classification of Prostate Cancer Using Multi-parametric MRI Data”
Ph.D. Advisers: Joseph Koopmeiners and Lin Zhang
Abstract: As a continuously developing tool for the diagnosis and prognosis of prostate cancer, multi-parametric magnetic resonance imaging (mpMRI) has been widely used in a variety of prostate cancer-related topics. While current research has shown the great potential of mpMRI in detecting prostate cancer, further investigation is needed for modeling some specific features of mpMRI, including the anatomic difference between different regions of a prostate, the spatial correlation between voxels within each prostate image, and the difference in the distribution of the observed mpMRI parameters between patients.
This dissertation focuses on novel statistical methods for the voxel-wise classification of prostate cancer using mpMRI data. Systematic modeling frameworks will be proposed to improve cancer classification by incorporating the aforementioned features of mpMRI. Three topics are discussed in depth: (1) development of a general Bayesian modeling framework that can incorporate the various mpMRI features; (2) how to model the mpMRI features in the proposed Bayesian framework, preferably in a computationally efficient manner; (3) development of an alternative approach to accounting for the mpMRI features, which uses a multi-resolution modeling technique to account for the regional heterogeneity, and is flexible to be extended to more complex classification problems for prostate cancer. Method performance will be illustrated using simulation studies and applications to the motivating data set.